A New Solution to the Equation τ ( p ) ≡ 0 ( mod p )

نویسندگان

  • Nik Lygeros
  • Olivier Rozier
  • Jean-Pierre Serre
چکیده

The known solutions to the equation τ(p) ≡ 0 (mod p) were p = 2, 3, 5, 7, and 2411. Here we present our method to compute the next solution, which is p = 7758337633. There are no other solutions up to 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasimodular solutions of a differential equation of hypergeometric type

Let p ≥ 5 be a prime number and Fp−1(τ) be the solution of the above differential equation for k = p−1 which is modular on SL2(Z) (such a solution exists and is unique up to a scalar multiple). For any zero τ0 in H of the form Fp−1(τ), the value of the jfunction at τ0 is algebraic and its reduction modulo (an extension of) p is a supersingular j-invariant of characteristic p, and conversely, al...

متن کامل

Sobolev Regularity for Refinement Equations via Ergodic Theory

The refinement equation f(x) = ∑N k=0 ck f(2x− k) plays a key role in wavelet theory and in subdivision schemes in approximation theory. This paper explores the relationship of the refinement equation to the mapping τ(x) = 2x mod 1. A simple necessary condition for the existence of an integrable solution to the refinement equation is obtained by considering the periodic cycles of τ . Another si...

متن کامل

Selmer’s Example

There is obviously a nonzero solution in R. To show there is a solution besides (0, 0, 0) in each Qp we follow a method I learned from Kevin Buzzard. The basic idea is to show there is a nonzero solution modulo p and then lift that solution p-adically by Hensel’s lemma. We will separately treat the cases p = 3, p = 5, and p 6= 3 or 5. To find a 3-adic solution, set x = 0 and z = −1, making the ...

متن کامل

Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of symmetric plane partitions

We propose new conjectures relating sum rules for the polynomial solution of the qKZ equation with open (reflecting) boundaries as a function of the quantum parameter q and the τ -enumeration of plane partitions with specific symmetries, with τ = −(q + q). We also find a conjectural relation à la Razumov-Stroganov between the τ → 0 limit of the qKZ solution and refined numbers of Totally Symmet...

متن کامل

Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries

We propose new conjectures relating sum rules for the polynomial solution of the qKZ equation with open (reflecting) boundaries as a function of the quantum parameter q and the τ -enumeration of Plane Partitions with specific symmetries, with τ = −(q + q). We also find a conjectural relation à la Razumov-Stroganov between the τ → 0 limit of the qKZ solution and refined numbers of Totally Symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010